ACM DL

ACM Transactions on

Sensor Networks (TOSN)

Menu
Latest Articles

Water Flow Driven Sensor Networks for Leakage and Contamination Monitoring in Distribution Pipelines

In this article, we introduce the concept of Water Flow Driven Sensor Networks for leakage and... (more)

Towards Profit Optimization During Online Participant Selection in Compressive Mobile Crowdsensing

A mobile crowdsensing (MCS) platform motivates employing participants from the crowd to complete... (more)

Robust Optimal Selection of Radio Type and Transmission Power for Internet of Things

Research efforts over the last few decades produced multiple wireless technologies, which are readily available to support communication between... (more)

One-Hop Out-of-Band Control Planes for Multi-Hop Wireless Sensor Networks

Separation of Control and Data Planes (SCDP) is a desirable paradigm for low-power multi-hop wireless sensor networks requiring high network... (more)

Efficient Indoor Localization Based on Geomagnetism

Geomagnetism is promising for indoor localization due to its omnipresence, high stability, and availability of magnetometers in smartphones. Previous... (more)

Dominating Sets Construction in RF-based Battery-free Sensor Networks with Full Coverage Guarantee

A new network architecture, named as RF-based battery-free sensor network, was proposed in recent... (more)

Blind Joint 2-D DOA/Symbols Estimation for 3-D Millimeter Wave Massive MIMO Communication Systems

By using a large number of antenna (sensor) elements at the receivers, massive multi-input... (more)

Fast Charging Scheduling under the Nonlinear Superposition Model with Adjustable Phases

Wireless energy transfer has been widely studied in recent decades, with existing works mainly focused on maximizing network lifetime, optimizing... (more)

Broadcast Scheduling in Battery-Free Wireless Sensor Networks

Battery-Free Wireless Sensor Networks (BF-WSNs) are newly emerging Wireless Sensor Networks (WSNs) to break through the energy limitations of... (more)

NEWS

About TOSN

TOSN publishes original research papers (approximately 30-40 printed pages each in ACM Transaction style) and tutorial and survey papers (approximately 30-50 printed pages each). We also accept short technical notes that focus on industrial technologies and practical experience.
read more

 

Forthcoming Articles
An Urban Mobility Model with Buildings Involved: Bridging Theory to Practice

Urban Mobility Models (UMMs) are fundamental tools for estimating the population in urban sites and their spatial movements over time. Most existing UMMs were developed primarily in 2D. However, we argue that people's movements and living patterns involve 3D space, i.e., buildings, which can heavily affect the accuracy of UMMs. In this paper, we for the first time conduct a comprehensive study on the impacts of buildings on human movements and the effect on UMMs. We innovatively capture the impacts by developing a Semi-absorbing Urban Mobility model (SUM) and theoretically prove its properties on its difference from that of previous UMMs. We also show that calibrating our original SUM may need a large number of parameters. As such, we develop two SUM extensions with a substantially reduced number of parameters, making calibration practical. Our evaluation also demonstrates that, as a basis for supporting mobile applications in an intracity and hourly scale, the SUM is far superior to previous UMMs. In a case study, we also show that the performance of the resource allocation scheme in a cellular network substantially improves by using SUM, with a reduction in the packet loss probability of 3.19 times.

Driving Lane Detection on Smartphones using Deep Neural Networks

Current smartphone-based navigation applications fail to provide lane-level information due to poor GPS accuracy. Detecting and tracking a vehicle's lane position on the road assists in lane-level navigation. For instance, it would be important to know whether a vehicle is in the correct lane for safely making a turn, or whether the vehicle's speed is compliant with a lane-specific speed limit. Recent efforts have used road network information and inertial sensors to estimate lane position. While inertial sensors can detect lane shifts over short windows, it would suffer from error accumulation over time. In this paper we present DeepLane, a system that leverages the back camera of a windshield-mounted smartphone to provide an accurate estimate of the vehicle's current lane. We employ a deep learning based technique to classify the vehicle's lane position. DeepLane does not depend on any infrastructure support such as lane markings and works even when there are no lane markings, a characteristic of many roads in developing regions. We perform extensive evaluation of DeepLane on real world datasets collected in developed and developing regions. DeepLane can detect vehicle's lane position with an accuracy of over 90% and we have implemented DeepLane as an Android-app.

Smartphone-Based SpO2 Measurement by Exploiting Wavelengths Separation And Chromophore Compensation

Patients with respiratory diseases require accurately measuring and frequently monitoring blood oxygen level. Existing techniques however either need a dedicated hardware or fails to predict low saturation levels. To fill in this gap, we propose a phone-based oxygen level estimation system, called PhO2, using camera and flashlight functions that are readily available on today's off-the-shelf smartphones. Since phone's camera and flashlight are not made for this purpose, utilizing them for oxygen level estimation poses many difficulties. We introduce a cost-effective add-on together with a set of algorithms for spatial and spectral optical signal modulation to amplify the optical signal of interest while minimizing noise. A near field-based pressure detection and feedback mechanism are also proposed to mitigate the negative impacts of user's behavior during the measurement. We also derive a non-linear referencing model with an outlier removal technique that allows PhO2 to accurately estimate the oxygen level from color intensity ratios produced by smartphone's camera. An evaluation on COTS smartphone with 6 subjects shows that PhO2 can estimate the oxygen saturation within 3.5% error rate comparing to FDA-approved gold standard pulse oximetry. In addition, our evaluation in hospitals presents high correlation with ground-truth qualified by the 0.83/1.0 Kendall Ä coefficient

BaroSense: Using Barometer for Road Traffic Congestion Detection and Path Estimation with CrowdSourcing

Traffic congestion on urban roadways is a serious problem requiring novel ways to detect and mitigate it. Determining the routes that lead to the traffic congestion segment is also vital in devising mitigation strategies. Further, crowdsourcing this information allows for use of these strategies quickly, and in places where infrastructure is not available. In this work, we present an unconventional method, using the barometer sensor of mobile phones, to (a) detect road traffic congestion and (b) estimate the paths that lead to the congested road segment. We make the observation that roads are not completely flat and very often, altitude varies along the road. We devise a feature set to map the rate of change of this altitude as the user moves into activities characterized as still and motion, which are further used by the traffic congestion detection algorithm to classify the group of users as being in moving, congestionor stuck states. To estimate the paths that lead to the congested road segment we compare the users barometer sensor readings with a pre-stored road signature of barometer values using DTW. We crowdsource this information from multiple mobile phones to improve the accuracy of traffic congestion detection and path estimation.

Mortar: An Open Testbed for Portable Building Analytics

Access to large amounts of real-world data has long been a barrier to the development and evaluation of analytics applications for the built environment. Open data sets exist, but they are limited in their span (how much data is available) and context (what kind of data is available and how it is described). Evaluation of such analytics is also limited by how the analytics themselves are implemented, often using hard-coded names of building components, points and locations, or unique input data formats. To advance the methodology for how such analytics are implemented and evaluated, we present Mortar: an open testbed for portable building analytics, currently spanning 90 buildings and containing over 9.1 billion data points. All buildings in the testbed are described using Brick, a recently developed metadata schema, providing rich functional descriptions of building assets and subsystems. We also propose a simple architecture for writing portable analytics applications that are robust to the diversity of buildings and can configure themselves based on context. We demonstrate the utility of Mortar by implementing 11 applications from the literature.

A Game-Theoretic Analysis of Energy-Depleting Jamming Attacks with a Learning Counterstrategy

Jamming may become a serious threat in Internet of Things networks of battery-powered nodes, as attackers can disrupt packet delivery and significantly reduce the lifetime of the nodes. In this work, we model an active defense scenario in which an energy-limited node uses power control to defend itself from a malicious attacker, whose energy constraints may not be known to the defender. The interaction between the two nodes is modeled as an asymmetric Bayesian game where the victim has incomplete information about the attacker. We show how to derive the optimal Bayesian strategies for both the defender and the attacker, which may then serve as guidelines to develop and gauge efficient heuristics that are less computationally expensive than the optimal strategies. For example, we propose a neural network-based learning method that allows the node to effectively defend itself from the jamming with a significantly reduced computational load. The outcomes of the ideal strategies highlight the trade-off between node lifetime and communication reliability and the importance of an intelligent defense from jamming attacks.

Dynamic Task-Based Intermittent Execution for Energy-Harvesting Devices

Energy-neutral Internet of Things requires freeing embedded devices from batteries and powering them from ambient energy. Ambient energy is, however, unpredictable and can only power a device intermittently. Therefore, the paradigm of intermittent execution is to save the program state into non-volatile memory frequently to preserve the execution progress. In task-based intermittent programming, the state is saved at task transition. Tasks are fixed at compile-time and agnostic to energy conditions. Thus, the state may be saved either more often than necessary or not often enough for the program to progress and terminate. To address these challenges, we propose Coala, an adaptive and efficient task-based execution model. Coala progresses on a multi-task scale when energy permits and preserves the computation progress on a sub-task scale if necessary. Coala's specialized memory virtualization mechanism ensures that power failures do not leave the program state in non-volatile memory inconsistent. Our evaluation on a real energy-harvesting platform not only shows that Coala reduces run time by up to 54% as compared to a state-of-the-art system, but also it is able to progress where static systems fail.

Smart Sensing, Communication, and Control in Perishable Food Supply Chain

Transportation and distribution (T&D) of fresh food products is a substantial and increasing part of the economic activity throughout the world. Unfortunately, fresh food T&D not only suffers from significant spoilage and waste, but also from dismal efficiency due to tight transit timing constraints between the the availability of harvested food until its delivery to the retailer. Fresh food is also easily contaminated, and together with deteriorated fresh food is responsible for much of Food Borne Illnesses. The logistics operations are ongoing rapid transformation on multiple fronts including infusion of information technology in the logistics operations, automation in the physical product handling, standardization of labeling, addressing and packaging, and shared logistics operations under 3rd party-logistics (3PL) and related models. In this paper, we discuss how these developments can be exploited to turn fresh food logistics into an intelligent cyberphysical system driven by online monitoring and associated operational control to enhance food freshness and safety, reduce food waste, and increase T&D efficiency. Some of the issues discussed in this context are fresh food quality deterioration processes, food quality/contamination sensing technologies, communication technologies for transmitting sensed data through the challenging fresh food media, intelligent management of T&D pipeline, and other operational issues.

All ACM Journals | See Full Journal Index

Search TOSN
enter search term and/or author name